Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Vet Res ; 55(1): 15, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317242

RESUMO

This study investigated the role of causative infectious agents in ulceration of the non-glandular part of the porcine stomach (pars oesophagea). In total, 150 stomachs from slaughter pigs were included, 75 from pigs that received a meal feed, 75 from pigs that received an equivalent pelleted feed with a smaller particle size. The pars oesophagea was macroscopically examined after slaughter. (q)PCR assays for H. suis, F. gastrosuis and H. pylori-like organisms were performed, as well as 16S rRNA sequencing for pars oesophagea microbiome analyses. All 150 pig stomachs showed lesions. F. gastrosuis was detected in 115 cases (77%) and H. suis in 117 cases (78%), with 92 cases (61%) of co-infection; H. pylori-like organisms were detected in one case. Higher infectious loads of H. suis increased the odds of severe gastric lesions (OR = 1.14, p = 0.038), while the presence of H. suis infection in the pyloric gland zone increased the probability of pars oesophageal erosions [16.4% (95% CI 0.6-32.2%)]. The causal effect of H. suis was mediated by decreased pars oesophageal microbiome diversity [-1.9% (95% CI - 5.0-1.2%)], increased abundances of Veillonella and Campylobacter spp., and decreased abundances of Lactobacillus, Escherichia-Shigella, and Enterobacteriaceae spp. Higher infectious loads of F. gastrosuis in the pars oesophagea decreased the odds of severe gastric lesions (OR = 0.8, p = 0.0014). Feed pelleting had no significant impact on the prevalence of severe gastric lesions (OR = 1.72, p = 0.28). H. suis infections are a risk factor for ulceration of the porcine pars oesophagea, probably mediated through alterations in pars oesophageal microbiome diversity and composition.


Assuntos
Fusobacterium , Infecções por Helicobacter , Helicobacter heilmannii , Microbiota , Úlcera Gástrica , Doenças dos Suínos , Animais , Suínos , Úlcera Gástrica/microbiologia , Úlcera Gástrica/patologia , Úlcera Gástrica/veterinária , RNA Ribossômico 16S , Doenças dos Suínos/microbiologia , Infecções por Helicobacter/veterinária , Infecções por Helicobacter/microbiologia , Mucosa Gástrica
2.
Vet Res ; 55(1): 6, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217046

RESUMO

Although the role of iron in bacterial infections has been well described for Staphylococcus (S.) aureus, iron acquisition in (bovine-associated) non-aureus staphylococci and mammaliicocci (NASM) remains insufficiently mapped. This study aimed at elucidating differences between four diverse bovine NASM field strains from two species, namely S. chromogenes and S. equorum, in regards to iron uptake (with ferritin and lactoferrin as an iron source) and siderophore production (staphyloferrin A and staphyloferrin B) by investigating the relationship between the genetic basis of iron acquisition through whole genome sequencing (WGS) with their observed phenotypic behavior. The four field strains were isolated in a previous study from composite cow milk (CCM) and bulk tank milk (BTM) in a Flemish dairy herd. Additionally, two well-studied S. chromogenes isolates originating from a persistent intramammary infection and from a teat apex were included for comparative purpose in all assays. Significant differences between species and strains were identified. In our phenotypical iron acquisition assay, while lactoferrin had no effect on growth recovery for all strains in iron deficient media, we found that ferritin served as an effective source for growth recovery in iron-deficient media for S. chromogenes CCM and BTM strains. This finding was further corroborated by analyzing potential ferritin iron acquisition genes using whole-genome sequencing data, which showed that all S. chromogenes strains contained hits for all three proposed ferritin reductive pathway genes. Furthermore, a qualitative assay indicated siderophore production by all strains, except for S. equorum. This lack of siderophore production in S. equorum was supported by a quantitative assay, which revealed significantly lower or negligible siderophore amounts compared to S. aureus and S. chromogenes. The WGS analysis showed that all tested strains, except for S. equorum, possessed complete staphyloferrin A (SA)-synthesis and export operons, which likely explains the phenotypic absence of siderophore production in S. equorum strains. While analyzing the staphyloferrin A and staphyloferrin B operon landscapes for all strains, we noticed some differences in the proteins responsible for iron acquisition between different species. However, within strains of the same species, the siderophore-related proteins remained conserved. Our findings contribute valuable insights into the genetic elements associated with bovine NASM pathogenesis.


Assuntos
Doenças dos Bovinos , Citratos , Mastite Bovina , Ornitina/análogos & derivados , Infecções Estafilocócicas , Feminino , Animais , Bovinos , Staphylococcus aureus/genética , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Lactoferrina/genética , Mastite Bovina/microbiologia , Staphylococcus , Leite , Ferro , Sideróforos , Ferritinas , Doenças dos Bovinos/microbiologia
3.
Vet Res ; 54(1): 93, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849010

RESUMO

While seven gastric non-Helicobacter pylori Helicobacter (NHPH) species are known to commonly colonize the stomach of cats and dogs, the potential of H. pylori and H. pylori-like organisms to infect animals remains controversial and was investigated in this study using gastric samples of 20 cats and 27 dogs. A Helicobacter genus-specific 16 S rRNA PCR assay, H. pylori-specific ureAB and glmM PCR assays and a nested PCR detecting 23 S rRNA in a Helicobacter genus-specific manner in a first round of PCR and a H. pylori-specific manner in a second round, were performed in combination with sequencing. Histopathological and anti-Helicobacter immunohistochemical evaluations were also performed. Based on 16 S rRNA sequence analysis, 39/47 animals (83%) appeared infected with canine/feline gastric NHPHs in the corpus and/or antrum. H. pylori-specific ureAB amplicons were obtained in samples of 22 stomachs (47%). One canine antrum sample positive in the ureAB assay was also positive in the H. pylori-specific glmM assay. While 36/47 (77%) animals had a positive sample in the first round of the nested 23 S rRNA PCR assay, all samples were negative in the second round. Sequence analysis of obtained amplicons and immunohistochemistry point towards the presence of unidentified H. pylori-like organisms in cats and dogs. Histopathological examination suggests a low pathogenic significance of the gastric Helicobacter spp. present in these animals. In conclusion, cats and dogs may be (co-)infected with gastric Helicobacter organisms other than the known gastric NHPHs. Culture and isolation should be performed to confirm this hypothesis.


Assuntos
Doenças do Gato , Doenças do Cão , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Animais , Gatos , Cães , Helicobacter pylori/genética , Infecções por Helicobacter/veterinária , Estômago , Helicobacter/genética , Imuno-Histoquímica
4.
Vet Res ; 54(1): 100, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884947

RESUMO

This study investigated whether cell-free supernatants (SN) from four bovine non-aureus staphylococcal (NAS) isolates prevent Staphylococcus aureus adhesion to and internalization into bovine mammary epithelial cells (MAC-T cells) and if so, to determine whether such effects were potentially associated with the S. aureus accessory gene regulator (agr) system. Overall, we demonstrated that all SN obtained from the NAS isolates promoted adhesion of a S. aureus agr+ strain to, yet reduced the internalization into MAC-T cells, while similar effects were not observed for its agr- mutant strain. Our findings provide novel anti-virulence strategies for treating and controlling bovine S. aureus mastitis.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estafilocócicas , Feminino , Bovinos , Animais , Staphylococcus , Staphylococcus aureus/genética , Infecções Estafilocócicas/veterinária , Células Epiteliais , Glândulas Mamárias Animais
5.
BMC Pediatr ; 23(1): 364, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454059

RESUMO

BACKGROUND: Gastric non-Helicobacter pylori helicobacters (NHPH) naturally colonize the stomach of animals. In humans, infection with these bacteria is associated with chronic active gastritis, peptic ulceration and MALT-lymphoma. H. bizzozeronii belongs to these NHPH and its prevalence in children is unknown. CASE PRESENTATION: This case report describes for the first time a NHPH infection in a 20-month-old girl with severe gastric disorders in Mexico. The patient suffered from melena, epigastric pain, and bloating. Gastroscopy showed presence of a Hiatus Hill grade I, a hemorrhagic gastropathy in the fundus and gastric body, and a Forrest class III ulcer in the fundus. Histopathologic examination revealed a chronic active gastritis with presence of long, spiral-shaped bacilli in the glandular lumen. Biopsies from antrum, body and incisure were negative for presence of H. pylori by culture and PCR, while all biopsies were positive for presence of H. bizzozeronii by PCR. Most likely, infection occurred through intense contact with the family dog. The patient received a triple therapy consisting of a proton pump inhibitor, clarithromycin, and amoxicillin for 14 days, completed with sucralfate for 6 weeks, resulting in the disappearance of her complaints. CONCLUSION: The eradication could not be confirmed, although it was suggested by clear improvement of symptoms. This case report further emphasizes the zoonotic importance of NHPH. It can be advised to routinely check for presence of both H. pylori and NHPH in human patients with gastric complains.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Gastropatias , Criança , Feminino , Humanos , Animais , Cães , Lactente , México , Infecções por Helicobacter/complicações , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/tratamento farmacológico , Gastrite/diagnóstico , Gastrite/microbiologia , Gastrite/patologia
6.
Trends Microbiol ; 31(12): 1206-1224, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37330381

RESUMO

A growing body of research, especially in recent years, has shown that bacterial extracellular vesicles (bEVs) are one of the key underlying mechanisms behind the pathogenesis of various diseases like pulmonary fibrosis, sepsis, systemic bone loss, and Alzheimer's disease. Given these new insights, bEVs are proposed as an emerging vehicle that can be used as a diagnostic tool or to tackle diseases when used as a therapeutic target. To further boost the understanding of bEVs in health and disease we thoroughly discuss the contribution of bEVs in disease pathogenesis and the underlying mechanisms. In addition, we speculate on their potential as novel diagnostic biomarkers and how bEV-related mechanisms can be exploited as therapeutic targets.


Assuntos
Vesículas Extracelulares , Sepse , Humanos , Sepse/diagnóstico
7.
Antibiotics (Basel) ; 12(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37237809

RESUMO

Antimicrobial resistance is a major public health concern. The aim of this study was to assess the presence of antibiotic resistance genes, previously reported in Helicobacter pylori, in gastric samples of 36 pigs, in which DNA of H. pylori-like organisms had been detected. Based on PCR and sequencing analysis, two samples were positive for the 16S rRNA mutation gene, conferring tetracycline resistance, and one sample was positive for the frxA gene with a single nucleotide polymorphism, conferring metronidazole resistance. All three amplicons showed the highest homology with H. pylori-associated antibiotic resistance gene sequences. These findings indicate that acquired antimicrobial resistance may occur in H. pylori-like organisms associated with pigs.

8.
Vet Res ; 54(1): 33, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020296

RESUMO

Actinobacillus equuli is mostly associated with disease in horses and is most widely known as the causative agent of sleepy foal disease. Even though existing phenotypic tools such as biochemical tests, 16S rRNA gene sequencing, and Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) can be used to identify members of the Actinobacillus genus, these methods struggle to differentiate between certain species and do not allow strain, virulence, and antimicrobial susceptibility typing. Hence, we performed in-depth analysis of 24 equine Actinobacillus isolates using phenotypic identification and susceptibility testing on the one hand, and long-read nanopore whole genome sequencing on the other hand. This allowed to address strain divergence down to the whole genome single nucleotide polymorphism (SNP) level. While lowest resolution was observed for 16S rRNA gene classification, a new multi-locus sequence typing (MLST) scheme allowed proper classification up to the species level. Nevertheless, a SNP-level analysis was required to distinguish A. equuli subspecies equuli and haemolyticus. Our data provided first WGS data on Actinobacillus genomospecies 1, Actinobacillus genomospecies 2, and A. arthritidis, which allowed the identification of a new Actinobacillus genomospecies 1 field isolate. Also, in-depth characterization of RTX virulence genes provided information on the distribution, completeness, and potential complementary nature of the RTX gene operons within the Actinobacillus genus. Even though overall low prevalence of acquired resistance was observed, two plasmids were identified conferring resistance to penicillin-ampicillin-amoxicillin and chloramphenicol in one A. equuli strain. In conclusion our data delivered new insights in the use of long-read WGS in high resolution identification, virulence gene typing, and antimicrobial resistance (AMR) of equine Actinobacillus species.


Assuntos
Actinobacillus , Animais , Cavalos , Actinobacillus/genética , Antibacterianos , Tipagem de Sequências Multilocus/veterinária , RNA Ribossômico 16S/genética , Virulência , Farmacorresistência Bacteriana , Sequenciamento Completo do Genoma/veterinária
9.
Vet Res ; 54(1): 28, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973819

RESUMO

Streptococcus uberis is a major causative agent of bovine mastitis, an inflammation of the mammary gland with substantial economic consequences. To reduce antibiotic use in animal agriculture, alternative strategies to treat or prevent mastitis are being investigated. Bovine-associated non-aureus staphylococci are proposed in that respect due to their capacity to inhibit the in vitro growth of S. uberis. We demonstrate that priming the murine mammary gland with Staphylococcus chromogenes IM reduces S. uberis growth in comparison with non-primed glands. The innate immune system is activated by increasing IL-8 and LCN2, which may explain this decreased growth.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estreptocócicas , Feminino , Animais , Bovinos , Camundongos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Glândulas Mamárias Animais/microbiologia , Streptococcus , Mastite Bovina/prevenção & controle , Mastite Bovina/microbiologia
10.
Aliment Pharmacol Ther ; 57(12): 1432-1444, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975151

RESUMO

BACKGROUND: Gastric non-Helicobacter pylori Helicobacter (NHPH) species naturally associated with animals have been linked with gastric disease in human patients. AIM: The prevalence and clinical significance of zoonotic gastric NHPHs was determined in large and well-defined, H. pylori-negative, gastric patient populations. METHODS: Patients were retrospectively (n = 464) and prospectively (n = 65) included for gastric biopsy collection: chronic gastritis (CG), peptic ulcer disease and gastric MALT lymphoma, without identified aetiology. PCR and sequencing was performed for the detection of gastric Helicobacter species. Retrospectively, asymptomatic gastric bypass patients (n = 38) were included as controls. Prospectively, additional saliva samples and symptom and risk factor questionnaires were collected. In this group, patients with gastric NHPH infection were administered standard H. pylori eradication therapy and underwent follow-up gastroscopy post-therapy. RESULTS: In the retrospective samples, the prevalence of gastric NHPHs was 29.1%, while no gastric NHPHs were detected in control biopsies. In the prospective cohort, a similar proportion tested positive: 27.7% in gastric tissue and 20.6% in saliva. The sensitivity and accuracy for the detection of gastric NHPHs in saliva compared to gastric tissue was 27.8% and 69.8% respectively. Following eradication therapy, clinical remission was registered in 12 of 17 patients, histological remission in seven of nine and eradication in four of eight patients. CONCLUSION: These findings suggest a pathophysiological involvement of NHPHs in gastric disease. Patients presenting with gastric complaints may benefit from routine PCR testing for zoonotic gastric NHPHs.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Linfoma de Zona Marginal Tipo Células B , Neoplasias Gástricas , Animais , Humanos , Helicobacter pylori/genética , Estudos Retrospectivos , Relevância Clínica , Estudos Prospectivos , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/complicações , Neoplasias Gástricas/patologia , Linfoma de Zona Marginal Tipo Células B/patologia , Antibacterianos/uso terapêutico
11.
Vet Res ; 54(1): 16, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859402

RESUMO

Mycoplasma hyopneumoniae is the primary agent of enzootic pneumonia in pigs. To minimize the economic losses caused by this disease, M. hyopneumoniae vaccination is commonly practiced. However, the persistence of M. hyopneumoniae vaccine-induced immunity, especially the cell-mediated immunity, till the moment of slaughter has not been investigated yet. Therefore, on two commercial farms, 25 pigs (n = 50) received a commercial bacterin intramuscularly at 16 days of age. Each month, the presence of M. hyopneumoniae-specific serum antibodies was analyzed and the proliferation of and TNF-α, IFN-γ and IL-17A production by different T cell subsets in blood was assessed using recall assays. Natural infection with M. hyopneumoniae was assumed in both farms. However, the studied pigs remained M. hyopneumoniae negative for almost the entire trial. Seroconversion was not observed after vaccination and all pigs became seronegative at two months of age. The kinetics of the T cell subset frequencies was similar on both farms. Mycoplasma hyopneumoniae-specific cytokine-producing CD4+CD8+ T cells were found in blood of pigs from both farms at one month of age but decreased significantly with increasing age. On the other hand, T cell proliferation after in vitro M. hyopneumoniae stimulation was observed until the end of the fattening period. Furthermore, differences in humoral and cell-mediated immune responses after M. hyopneumoniae vaccination were not seen between pigs with and without maternally derived antibodies. This study documents the long-term M. hyopneumoniae vaccine-induced immune responses in fattening pigs under field conditions. Further research is warranted to investigate the influence of a natural infection on these responses.


Assuntos
Vacinas Bacterianas , Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Animais , Vacinas Bacterianas/imunologia , Linfócitos T CD8-Positivos , Ativação Linfocitária , Suínos , Pneumonia Suína Micoplasmática/prevenção & controle , Linfócitos T CD4-Positivos , Citocinas , Anticorpos Antibacterianos
12.
Vet Res ; 54(1): 8, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726112

RESUMO

Porcine respiratory disease is one of the most important health problems in pig production worldwide. Cranioventral pulmonary consolidation (CVPC) and pleurisy are the two most common lesions in the respiratory tract of slaughtered pigs. The present review paper discusses pathogens involved in the lesions, lesion prevalence, scoring systems, advantages and disadvantages of slaughterhouse examination, and the impact of CVPC and pleurisy on performance, carcass, and meat quality. Cranioventral pulmonary consolidation and pleurisy in slaughter pigs are characteristic for infections with Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae, respectively, although other pathogens may cause similar lesions and/or be involved in their development. The overall prevalence of CVPC and pleurisy in slaughter pigs are still high, being the prevalence of CVPC generally higher than that of chronic pleurisy. The advantages and disadvantages of slaughterhouse examination are discussed in relation to practical aspects, the assessment of lesions, the number and representativeness of the examined animals and the interpretation and value of the results for the stakeholders. The main scoring methods for CVPC and pleurisy are shortly reviewed. In general, scoring methods can be applied rapidly and easily, although significant variation due to abattoir and observer remains. Artificial intelligence-based technologies that automatically score lesions and facilitate processing of data may aid solving these problems. Cranioventral pulmonary consolidation and pleurisy have a major negative impact on pig performance, and the effects increase the extension of the lesions and/or presence of multiple lesions. The performance losses caused by these lesions, however, vary significantly between studies and farms, possibly due to differences in study population and used methodology. Both lesions also have a negative impact on different carcass and meat quality parameters, leading to increased risk for poor processing and storage of the carcasses. Monitoring lung lesions of slaughter pigs should be optimized and implemented routinely; however, it is recommended to complement this information with farm data and laboratory results for specific pathogens.


Assuntos
Pneumopatias , Pleurisia , Doenças dos Suínos , Suínos , Animais , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/patologia , Inteligência Artificial , Pulmão/patologia , Pneumopatias/epidemiologia , Pneumopatias/patologia , Pneumopatias/veterinária , Pleurisia/patologia , Pleurisia/veterinária
13.
J Extracell Vesicles ; 12(2): e12306, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792546

RESUMO

The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host. Increasing evidence supports the role of the gut microbiota as a key player in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Unfortunately, the mechanisms behind the interplay between gut pathogens and AD are still elusive. It is known that bacteria-derived outer membrane vesicles (OMVs) act as natural carriers of virulence factors that are central players in the pathogenesis of the bacteria. Helicobacter pylori (H. pylori) is a common gastric pathogen and H. pylori infection has been associated with an increased risk to develop AD. Here, we are the first to shed light on the role of OMVs derived from H. pylori on the brain in healthy conditions and on disease pathology in the case of AD. Our results reveal that H. pylori OMVs can cross the biological barriers, eventually reaching the brain. Once in the brain, these OMVs are taken up by astrocytes, which induce activation of glial cells and neuronal dysfunction, ultimately leading to exacerbated amyloid-ß pathology and cognitive decline. Mechanistically, we identified a critical role for the complement component 3 (C3)-C3a receptor (C3aR) signalling in mediating the interaction between astrocytes, microglia and neurons upon the presence of gut H. pylori OMVs. Taken together, our study reveals that H. pylori has a detrimental effect on brain functionality and accelerates AD development via OMVs and C3-C3aR signalling.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Helicobacter pylori , Humanos , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Encéfalo , Vesículas Extracelulares/patologia
14.
Microbiol Spectr ; 11(1): e0412322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36602320

RESUMO

Infections with Brachyspira hyodysenteriae, the etiological agent of swine dysentery, result in major economic losses in the pig industry worldwide. Even though microbial differentiation of various Brachyspira species can be obtained via PCR, no quick diagnostics for antimicrobial susceptibility testing are in place, which is mainly due to the time-consuming (4 to 7 days) anaerobic growth requirements of these organisms. Veterinarians often rely on a clinical diagnosis for initiating antimicrobial treatment. These treatments are not always effective, which may be due to high levels of acquired resistance in B. hyodysenteriae field isolates. By using long-read-only whole-genome sequencing and a custom-trained Bonito base-calling model, 81 complete B. hyodysenteriae genomes with median Q51 scores and 99% completeness were obtained from 86 field strains. This allowed the assessment of the predictive potential of genetic markers in relation to the observed acquired resistance phenotypes obtained via agar dilution susceptibility testing. Multidrug resistance was observed in 77% and 21% of the tested strains based on epidemiological cutoff and clinical breakpoint values, respectively. The predictive power of genetic hallmarks (genes and/or gene mutations) for antimicrobial susceptibility testing was promising. Sensitivity and specificity for tiamulin [tva(A) and 50SL3N148S, 99% and 67%], valnemulin [tva(A), 97% and 92%), lincomycin (23SA2153T/G and lnuC, 94% and 100%), tylvalosin (23SA2153T/G, 99% and 93%), and doxycycline (16SG1026C, 93% and 87%) were determined. The predictive power of these genetic hallmarks is promising for use in sequencing-based workflows to speed up swine dysentery diagnostics in veterinary medicine and determine proper antimicrobial use. IMPORTANCE Diagnostics for swine dysentery rely on the identification of Brachyspira species using molecular techniques. Nevertheless, no quick diagnostic tools are available for antimicrobial susceptibility testing due to extended growth requirements (7 to 14 days). To enable practitioners to tailor antimicrobial treatment to specific strains, long-read sequencing-based methods are expected to lead to rapid methods in the future. Nevertheless, their potential implementation should be validated extensively. This mainly implies assessing sequencing accuracy and the predictive power of genetic hallmarks in relation to their observed (multi)resistance phenotypes.


Assuntos
Anti-Infecciosos , Brachyspira hyodysenteriae , Disenteria , Infecções por Bactérias Gram-Negativas , Doenças dos Suínos , Animais , Suínos , Brachyspira hyodysenteriae/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Diagnóstico Rápido , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/tratamento farmacológico , Anti-Infecciosos/farmacologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/tratamento farmacológico
15.
Front Immunol ; 13: 1015525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569943

RESUMO

Introduction: Enzootic pneumonia still causes major economic losses to the intensive pig production. Vaccination against its primary pathogen, Mycoplasma hyopneumoniae, is carried out worldwide to control the disease and minimize clinical signs and performance losses. Nonetheless, the effects of both infection with, and vaccination against Mycoplasma hyopneumoniae on the innate and adaptive immune responses remain largely unknown. Therefore, we conducted a study in which piglets were injected once with a commercial bacterin V1 or V2, or the adjuvant of V1 (A) to investigate their effect on local, innate and adaptive immune responses. Methods: Three weeks after vaccination, piglets were challenge infected with M. hyopneumoniae and euthanized four weeks later to assess vaccine efficacy via macroscopic and microscopic evaluation of lung lesions. Blood and broncho-alveolar lavage fluid (BAL) samples were collected to measure antibody responses, cellular immunity, BAL cytokine levels and BAL M. hyopneumoniae DNA load as well as cytokine secretion by monocytes. Results: After vaccination, proliferation of antigen-specific CD3+ T cells and a higher percentage of TNF-α+ CD8+, and TNF-α+ and TNF-α+IFN-γ+ CD4+CD8+ T cells was seen in V1, while proliferation of or a significant increase in cytokine production by different T cell subsets could not be observed for animals from V2. Interestingly, LPS-stimulated blood monocytes from V1 and A secreted less IL-10 on D7. After challenge, higher levels of IgA, more IL-10 and less IL-1ß was detected in BAL from V1, which was not observed in V2. Animals from A had significantly more IL-17A in BAL. The macroscopic lung lesion score and the M. hyopneumoniae DNA load at euthanasia was lower in V1, but the microscopic lung lesion score was lower in both vaccinated groups. Discussion: In conclusion, these results indicate that the two commercial bacterins induced different local and adaptive immune responses, that the adjuvant alone can reduce anti-inflammatory innate immune responses, and that both vaccines had a different efficacy to reduce Mycoplasma-like lung lesions and M. hyopneumoniae DNA load in the lung.


Assuntos
Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Suínos , Animais , Interleucina-10 , Fator de Necrose Tumoral alfa , Linfócitos T CD8-Positivos , Vacinas Bacterianas , Adjuvantes Imunológicos/farmacologia , Citocinas , Imunidade Celular
16.
Front Physiol ; 13: 992689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277189

RESUMO

The objective of this study was to evaluate the effect of the interaction of the zinc source (ZnSO4 vs. zinc amino acid complex) and vitamin E level (50 IU/kg vs. 100 IU/kg) on meat yield and quality in broilers subjected to chronic cyclic heat stress in the finisher phase. A total of 1224 one-day-old male Ross 308 broilers were randomly distributed among four dietary treatments. Each treatment contained nine replicates of 34 birds, housed in floor pens in a temperature- and lighting-controlled room. Treatments were organized in a 2 × 2 factorial arrangement: two sources of zinc, 60 mg/kg of Zn as ZnSO4 or 60 mg/kg of Zn as zinc amino acid complexes (ZnAA), combined with two levels of vitamin E (50 or 100 IU/kg). From day 28 until day 37 (finisher phase), all birds were subjected to chronic cyclic heat stress (32 ± 2°C for 6 h daily). In the present study, it was observed that replacing ZnSO4 with ZnAA increased breast meat weight and yield of broilers reared under chronic cyclic heat stress conditions, whereas total slaughter yield was not affected. Moreover, it was observed that replacing ZnSO4 with ZnAA resulted in breast meat with a lower drip and thawing loss and a higher marinade uptake. In conclusion, replacing ZnSO4 with more readily available ZnAA can improve breast meat yield and increase the water-holding capacity of breast meat of broilers exposed to chronic cyclic heat stress at the end of the production cycle. However, as no thermoneutral group was included in the present study, the observed effects of the zinc source cannot be generalized as a solution for heat stress. Moreover, the beneficial effects of ZnAA on breast meat yield and quality seem to be independent of the vitamin E level, and increasing vitamin E level has no additional beneficial effects.

17.
Vet Res ; 53(1): 78, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209119

RESUMO

Besides Helicobacter pylori, a Gram-negative bacterium that may cause gastric disorders in humans, non-Helicobacter pylori helicobacters (NHPH) may also colonize the stomach of humans and animals. In pigs, H. suis can induce gastritis and may play a role in gastric ulcer disease, possibly in association with Fusobacterium gastrosuis. In the present study, gastric samples from 71 slaughtered pigs and 14 hunted free range wild boars were tested for the presence of DNA of F. gastrosuis and gastric Helicobacter species associated with pigs, dogs cats and humans, using species-specific PCR assays, followed by sequencing of the amplicon. These gastric samples were also histopathologically evaluated. Almost all the pigs presented gastritis (95.8%). Helicobacter spp. were detected in 78.9% and F. gastrosuis in 35.2% of the animals. H. suis was the most frequently identified Helicobacter species (57.7% of the animals), followed by a H. pylori-like species (50.7%) and less often H. salomonis and H. felis (each in 2.8% of the animals). H. suis was most often detected in the glandular (distal) part of the stomach (pars oesophagea 9.9%, oxyntic mucosa 35.2%, antral mucosa 40.8%), while the H. pylori-like species was mainly found in the non-glandular (proximal) part of the stomach (pars oesophagea 39.4%, oxyntic mucosa 14.1%, antral mucosa 4.2%). The great majority of wild boars were also affected with gastritis (71.4%) and Helicobacter spp. and F. gastrosuis were detected in 64.3% and 42.9% of the animals, respectively. H. bizzozeronii and H. salomonis were the most frequently detected Helicobacter species, while a H. pylori-like species and H. suis were only occasionally identified. These findings suggest that these microorganisms can colonize the stomach of both porcine species and may be associated with gastric pathology. This should, however, be confirmed through bacterial isolation. This is the first description of the presence of F. gastrosuis DNA in the stomach of wild boars and a H. pylori-like species in the pars oesophagea of the porcine stomach.


Assuntos
Doenças do Cão , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Doenças dos Suínos , Animais , Doenças do Cão/microbiologia , Cães , Fusobacterium , Mucosa Gástrica , Gastrite/microbiologia , Gastrite/veterinária , Helicobacter/genética , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/veterinária , Helicobacter pylori/genética , Humanos , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia
18.
Front Pharmacol ; 13: 692437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935877

RESUMO

We investigated the effect of increased pH induced by acid suppressants on the viability of non-Helicobacter pylori helicobacters (NHPHs) within parietal cell intracellular canaliculi and fundic glandular lumina by immunohistochemistry, electron microscopy, quantitative PCR, urea breath tests, and using a bilayer culture system. Three months before the experiment, mice were infected with the NHPH H. suis and then treated with famotidine (2 mg/kg body weight [BW], once daily), lansoprazole (30 mg/kg BW, once daily), or vonoprazan (20 mg/kg BW, once daily) for 3 days. Immunohistochemical studies using the TUNEL method, quantitative PCR analysis, and urea breath tests were performed. PCR analysis showed a decrease in the NHPH quantity after vonoprazan treatment. Urea breath tests revealed a significant decrease in the NHPH urease activity after vonoprazan, lansoprazole, and famotidine treatments for 3 days; however, 4 days after the treatment, urease activity reversed to the pretreatment level for each treatment group. Electron microscopy revealed an increase in the damaged NHPH after vonoprazan treatment. The TUNEL method revealed apoptotic NHPH within parietal cells after vonoprazan treatment. The bilayer culture results demonstrated that NHPH moved more quickly at a pH of 4.0 than at a pH of 3.0, 5.0, and 6.5, and electron microscopy revealed a change from the spiral form to the coccoid form under near-neutral pH conditions. We thus proposed that acid suppressants, especially vonoprazan, induce NHPH damage by altering pH.

19.
Front Microbiol ; 13: 869538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992659

RESUMO

Fluoroquinolone agents are considered critical for human medicine by the World Health Organization (WHO). However, they are often used for the treatment of avian colibacillosis in poultry production, creating considerable concern regarding the potential spread of fluoroquinolone resistance genes from commensals to pathogens. Therefore, there is a need to understand the impact of fluoroquinolone application on the reservoir of ARGs in poultry gut and devise means to circumvent potential resistome expansion. Building upon a recent dose optimization effort, we used shotgun metagenomics to investigate the time-course change in the cecal microbiome and resistome of broiler chickens receiving an optimized dosage [12.5 mg/kg body weight (bw)/day], with or without synbiotic supplementation (PoultryStar®, BIOMIN GmbH), and a high dosage of enrofloxacin (50 mg/kg bw/day). Compared to the high dose treatment, the low (optimized) dose of enrofloxacin caused the most significant perturbations in the cecal microbiota and resistome of the broiler chickens, demonstrated by a lower cecal microbiota diversity while substantially increasing the antibiotic resistance genes (ARGs) resistome diversity. Withdrawal of antibiotics resulted in a pronounced reduction in ARG diversity. Chickens receiving the synbiotic treatment had the lowest diversity and number of enriched ARGs, suggesting an alleviating impact on the burden of the gut resistome. Some Proteobacteria were significantly increased in the cecal metagenome of chickens receiving enrofloxacin and showed a positive association with increased ARG burden. Differential abundance (DA) analysis revealed a significant increase in the abundance of ARGs encoding resistance to macrolides-lincosamides-streptogramins (MLS), aminoglycosides, and tetracyclines over the period of enrofloxacin application, with the optimized dosage application resulting in a twofold higher number of affected ARG compared to high dosage application. Our results provide novel insights into the dose-dependent effects of clinically important enrofloxacin application in shaping the broiler gut resistome, which was mitigated by a synbiotic application. The contribution to ameliorating the adverse effects of antimicrobial agents, that is, lowering the spread of antimicrobial resistance genes, on the poultry and potentially other livestock gastrointestinal microbiomes and resistomes merits further study.

20.
Vet Res ; 53(1): 42, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35692057

RESUMO

This article focuses on the pathogenic significance of Helicobacter species naturally colonizing the stomach of dogs, cats and pigs. These gastric "non-Helicobacter (H.) pylori Helicobacter species" (NHPH) are less well-known than the human adapted H. pylori. Helicobacter suis has been associated with gastritis and decreased daily weight gain in pigs. Several studies also attribute a role to this pathogen in the development of hyperkeratosis and ulceration of the non-glandular stratified squamous epithelium of the pars oesophagea of the porcine stomach. The stomach of dogs and cats can be colonized by several Helicobacter species but their pathogenic significance for these animals is probably low. Helicobacter suis as well as several canine and feline gastric Helicobacter species may also infect humans, resulting in gastritis, peptic and duodenal ulcers, and low-grade mucosa-associated lymphoid tissue lymphoma. These agents may be transmitted to humans most likely through direct or indirect contact with dogs, cats and pigs. Additional possible transmission routes include consumption of water and, for H. suis, also consumption of contaminated pork. It has been described that standard H. pylori eradication therapy is usually also effective to eradicate the NHPH in human patients, although acquired antimicrobial resistance may occasionally occur and porcine H. suis strains are intrinsically less susceptible to aminopenicillins than non-human primate H. suis strains and other gastric Helicobacter species. Virulence factors of H. suis and the canine and feline gastric Helicobacter species include urease activity, motility, chemotaxis, adhesins and gamma-glutamyl transpeptidase. These NHPH, however, lack orthologs of cytotoxin-associated gene pathogenicity island and vacuolating cytotoxin A, which are major virulence factors in H. pylori. It can be concluded that besides H. pylori, gastric Helicobacter species associated with dogs, cats and pigs are also clinically relevant in humans. Although recent research has provided better insights regarding pathogenic mechanisms and treatment strategies, a lot remains to be investigated, including true prevalence rates, exact modes of transmission and molecular pathways underlying disease development and progression.


Assuntos
Doenças do Gato , Doenças do Cão , Gastrite , Infecções por Helicobacter , Helicobacter heilmannii , Helicobacter pylori , Helicobacter , Doenças dos Suínos , Animais , Gatos , Citotoxinas , Cães , Mucosa Gástrica/metabolismo , Gastrite/veterinária , Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Infecções por Helicobacter/veterinária , Helicobacter heilmannii/genética , Helicobacter pylori/metabolismo , Humanos , Suínos , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...